
Reproducible Analytical
Pipelines Strategy
Building analysis as code

Martin Ralphs
Head of Analysis Standards and Pipelines
Methods and Quality Directorate

A process that produces an analytical product from data

Analytical pipeline

Get Analyse Report

Quality Assurance

Manual pipelines carry quality risks
Outputs take

a long time to produce and quality assure
and a long time to reproduce

Source data and outputs are not connected, except through manual steps

Processes are manual, hard to follow and tedious, increasing the risk of mistakes

“Copy and paste” and repetitive manual steps are error-prone

It is hard to track changes without a lot of manual effort

Open source software

Version control

Embedded
documentation

Automated quality
assurance

Minimise manual steps

Maximise transparency

Improved
quality

Increased
trust

More efficient

Better
business
continuity

Better
knowledge

management

Reproducible Analytical Pipelines

“Analysis as code”

csv files

Local database

Get Analyse Visualise

ReportPython or R code

Version
control

Managed software package

Code
hosting

Output

Data
products

A reproducible analytical pipeline

Automated
Testing

Code
coverage

What does this look like in practice?
• Bulletins built automatically by code, along with charts,

tables, datasets and supporting documents
• Automatic QA reports, logs and validation
• Datasets formatted, validated and built automatically
• Code hosted remotely, with version control so everybody

working on it knows who did what, when and why

10

11

RAP benefits: efficiencies
• RAPs reduce processing time and the resource needed

to produce statistical outputs
• Typical FTE savings of from 50-95% of analyst time
• Very labour-intensive manual processes see the biggest

benefits, especially if they are run regularly
• RAPs free up analyst time to do more analysis and less

tedious, risk-prone manual work

12

RAP benefits: significant quality improvement
• Processes are well documented, so easier to understand
• Processes are faster to maintain and fix
• Processes are easier to pick up, so more resilient
• We can re-use modular components
• RAPs have helped us move our work to cloud-based

environments more quickly
• RAP can be applied even for very high-pressure work
BUT RAPs require maintenance and updating!

Strategic enablers for RAP
• “Open source by default” policy for UK government
• Analysis Function RAP Strategy to deliver analysis using RAP by

default. Three strands focus on tools, capability and culture
• Active communities of practice like the RAP champions' network

and use of peer review
• Tools, guidance, standards and policies promote RAP practices
• Shared examples of “what good looks like”
• Consultancy and mentoring support for analyst teams
• RAP learning pathway to build capability

https://www.gov.uk/guidance/be-open-and-use-open-source
https://analysisfunction.civilservice.gov.uk/policy-store/reproducible-analytical-pipelines-strategy/
https://analysisfunction.civilservice.gov.uk/support/reproducible-analytical-pipelines/reproducible-analytical-pipeline-rap-champions/
https://github.com/best-practice-and-impact/govcookiecutter
https://best-practice-and-impact.github.io/qa-of-code-guidance/intro.html

Our approach to building capability
• Start small and grow incrementally
• Develop early examples to demonstrate value and impact
• Teams learn by doing not by sitting through courses
• We use “just-in-time learning” so training is used immediately
• Teams learn together, through paired development and mentoring support
• Use good practice from the beginning

 Version control and code hosting
 Coding standards (like PEP8 for Python or tidverse for R)
 Built-in testing
 Comprehensive documentation
 Packaged, modular code

15

Implementation models for RAP
We use different approaches to meet different needs:
• Hub and spoke model to build and embed capability via

central consultancy and support function which sets
standards and guidance

• Local business area teams to build local RAPs
• Expert, dedicated teams to support major projects
• Crisis / surge function for rapid response

▲ Skills retention, in teams and organisations
▲ Capability – getting to a critical mass

- Of coding competency
- Of managers who can assure RAPs

▲ Developing a culture that promotes “analysis as code”
 as the standard way to build analysis
▲ A technology stack that enables RAP practices
▲ Risk aversion to developing in the open

The main challenges

16

RAP works well when
Senior managers
give commitment
and advocacy

Team members are
committed to the
work

Teams have
enough time to
contribute

There is a base
level of technical
understanding

The right tools are
in the right place

There is a plan to
move to business
as usual with
resource to
maintain and
update pipelinesThere is a shared

view of what good
looks like

There is a
supportive
community of
practice

RAP is harder to do when

RAP is not
seen as a
positive
culture
change

There is
limited

access to
open-source

tools

Coding
capability is

limited

Not enough
time is set
aside to do

RAP

There is no
plan for

sustainability

Poorly written and managed analysis
code is as risky as manual analysis!

The code is hard to understand So it’s hard to use and hard to assure

The code is repetitive Likely to contain mistakes, hard to change and adapt

Manual version control or no version
control at all

We don’t know who changed what, when or why
We can’t revert to earlier versions
We can’t keep track of changes

The code is not tested We can’t be sure the code performs as expected

Manual intervention during the run Manual steps lead to human error and increase risk

RAP Guidance

Quality Assurance of
Code for Analysis and

Research (QACAR)

Sets out good practices for
writing reproducible,

transparent and resilient
code

Minimum Viable
Product for RAP

Minimum application of
software engineering
practice to analysis

Reflects feedback from the
RAP Champions

ONS version is more
stringent

Code QA
Checklists

Reflects that quality
assurance of code should be
proportionate (AQuA book)

Reiterates the content of the
RAP minimum viable product

https://best-practice-and-impact.github.io/qa-of-code-guidance/intro.html
https://best-practice-and-impact.github.io/qa-of-code-guidance/intro.html
https://best-practice-and-impact.github.io/qa-of-code-guidance/intro.html
https://github.com/best-practice-and-impact/rap_mvp_maturity_guidance/blob/master/Reproducible-Analytical-Pipelines-MVP.md
https://github.com/best-practice-and-impact/rap_mvp_maturity_guidance/blob/master/Reproducible-Analytical-Pipelines-MVP.md
https://analysisfunction.civilservice.gov.uk/support/reproducible-analytical-pipelines/reproducible-analytical-pipeline-rap-champions/
https://best-practice-and-impact.github.io/ONS_minimum_RAP/
https://best-practice-and-impact.github.io/ONS_minimum_RAP/
https://best-practice-and-impact.github.io/qa-of-code-guidance/checklists.html
https://best-practice-and-impact.github.io/qa-of-code-guidance/checklists.html
https://www.gov.uk/government/publications/the-aqua-book-guidance-on-producing-quality-analysis-for-government

	Reproducible Analytical Pipelines Strategy
	Analytical pipeline
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Manual pipelines carry quality risks
	Slide Number 7
	A reproducible analytical pipeline
	What does this look like in practice?
	Slide Number 10
	RAP benefits: efficiencies
	RAP benefits: significant quality improvement
	Strategic enablers for RAP
	Our approach to building capability
	Implementation models for RAP
	The main challenges
	RAP works well when
	RAP is harder to do when
	Poorly written and managed analysis code is as risky as manual analysis!
	RAP Guidance

